The reducible solution to a system of matrix equations over the Hamilton quaternion algebra

نویسندگان

چکیده

Reducible matrices are closely associated with the connection of directed graph and can be used in stochastic processes, biology others. In this paper, we investigate reducible solution to a system matrix equations over Hamilton quaternion algebra. We establish necessary sufficient conditions for have derive formula general when it is solvable. Finally, present numerical example illustrate main results paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of the common solution to some quaternion matrix equations with applications

We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...

متن کامل

Matrix Theory over the Complex Quaternion Algebra

We present in this paper some fundamental tools for developing matrix analysis over the complex quaternion algebra. As applications, we consider generalized inverses, eigenvalues and eigenvectors, similarity, determinants of complex quaternion matrices, and so on. AMS Mathematics Subject Classification: 15A06; 15A24; 15A33

متن کامل

from linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar

chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...

15 صفحه اول

ranks of the common solution to some quaternion matrix equations with applications

we derive the formulas of the maximal andminimal ranks of four real matrices $x_{1},x_{2},x_{3}$ and $x_{4}$in common solution $x=x_{1}+x_{2}i+x_{3}j+x_{4}k$ to quaternionmatrix equations $a_{1}x=c_{1},xb_{2}=c_{2},a_{3}xb_{3}=c_{3}$. asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. we give the exp...

متن کامل

The least-square bisymmetric solution to a quaternion matrix equation with applications

In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2309731l